Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.181
1.
Handb Clin Neurol ; 201: 1-17, 2024.
Article En | MEDLINE | ID: mdl-38697733

Peripheral nerves are functional networks in the body. Disruption of these networks induces varied functional consequences depending on the types of nerves and organs affected. Despite the advances in microsurgical repair and understanding of nerve regeneration biology, restoring full functions after severe traumatic nerve injuries is still far from achieved. While a blunted growth response from axons and errors in axon guidance due to physical barriers may surface as the major hurdles in repairing nerves, critical additional cellular and molecular aspects challenge the orderly healing of injured nerves. Understanding the systematic reprogramming of injured nerves at the cellular and molecular levels, referred to here as "hallmarks of nerve injury regeneration," will offer better ideas. This chapter discusses the hallmarks of nerve injury and regeneration and critical points of failures in the natural healing process. Potential pharmacological and nonpharmacological intervention points for repairing nerves are also discussed.


Nerve Regeneration , Peripheral Nerve Injuries , Humans , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/physiopathology , Animals , Peripheral Nerves , Axons/physiology , Axons/pathology
2.
J Cell Biol ; 223(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38713825

Whether, to what extent, and how the axons in the central nervous system (CNS) can withstand sudden mechanical impacts remain unclear. By using a microfluidic device to apply controlled transverse mechanical stress to axons, we determined the stress levels that most axons can withstand and explored their instant responses at nanoscale resolution. We found mild stress triggers a highly reversible, rapid axon beading response, driven by actomyosin-II-dependent dynamic diameter modulations. This mechanism contributes to hindering the long-range spread of stress-induced Ca2+ elevations into non-stressed neuronal regions. Through pharmacological and molecular manipulations in vitro, we found that actomyosin-II inactivation diminishes the reversible beading process, fostering progressive Ca2+ spreading and thereby increasing acute axonal degeneration in stressed axons. Conversely, upregulating actomyosin-II activity prevents the progression of initial injury, protecting stressed axons from acute degeneration both in vitro and in vivo. Our study unveils the periodic actomyosin-II in axon shafts cortex as a novel protective mechanism, shielding neurons from detrimental effects caused by mechanical stress.


Actomyosin , Axons , Stress, Mechanical , Animals , Mice , Actomyosin/metabolism , Axons/metabolism , Axons/pathology , Calcium/metabolism , Cells, Cultured , Nerve Degeneration/pathology , Rats
3.
Acta Neuropathol ; 147(1): 79, 2024 May 05.
Article En | MEDLINE | ID: mdl-38705966

Although human females appear be at a higher risk of concussion and suffer worse outcomes than males, underlying mechanisms remain unclear. With increasing recognition that damage to white matter axons is a key pathologic substrate of concussion, we used a clinically relevant swine model of concussion to explore potential sex differences in the extent of axonal pathologies. At 24 h post-injury, female swine displayed a greater number of swollen axonal profiles and more widespread loss of axonal sodium channels than males. Axon degeneration for both sexes appeared to be related to individual axon architecture, reflected by a selective loss of small caliber axons after concussion. However, female brains had a higher percentage of small caliber axons, leading to more extensive axon loss after injury compared to males. Accordingly, sexual dimorphism in axonal size is associated with more extensive axonal pathology in females after concussion, which may contribute to worse outcomes.


Axons , Brain Concussion , Disease Models, Animal , Sex Characteristics , Animals , Female , Axons/pathology , Brain Concussion/pathology , Male , Swine , Brain/pathology
4.
Amino Acids ; 56(1): 32, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637413

Diabetic neuropathy (DN) is a common neurological complication caused by diabetes mellitus (DM). Axonal degeneration is generally accepted to be the major pathological change in peripheral DN. Taurine has been evidenced to be neuroprotective in various aspects, but its effect on spinal cord axon injury (SCAI) in DN remains barely reported. This study showed that taurine significantly ameliorated axonal damage of spinal cord (SC), based on morphological and functional analyses, in a rat model of DN induced by streptozotocin (STZ). Taurine was also found to induce neurite outgrowth in cultured cerebral cortex neurons with high glucose exposure. Moreover, taurine up-regulated the expression of nerve growth factor (NGF) and neurite outgrowth relative protein GAP-43 in rat DN model and cultured cortical neurons/VSC4.1 cells. Besides, taurine increased the activating phosphorylation signals of TrkA, Akt, and mTOR. Mechanistically, the neuroprotection by taurine was related to the NGF-pAKT-mTOR axis, because either NGF-neutralizing antibody or Akt or mTOR inhibitors was found to attenuate its beneficial effects. Together, our results demonstrated that taurine promotes spinal cord axon repair in a model of SCAI in STZ-induced diabetic rats, mechanistically associating with the NGF-dependent activation of Akt/mTOR pathway.


Diabetes Mellitus, Experimental , Proto-Oncogene Proteins c-akt , Animals , Rats , Axons/metabolism , Axons/pathology , Diabetes Mellitus, Experimental/metabolism , Nerve Growth Factor/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Taurine/pharmacology , Taurine/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
5.
Clinics (Sao Paulo) ; 79: 100359, 2024.
Article En | MEDLINE | ID: mdl-38657346

OBJECTIVE: The aim of this study was to evaluate the GSH effect on functional and histological recovery after experimental spinal cord injury in rats. METHODS: Forty Wistar rats were subjected to spinal cord injury through the Multicenter Animal Spinal Cord Injury Study (MASCIS) Impactor system. The rats were sorted and divided into four groups, as follows: Group 1 ‒ Laminectomy and spinal cord injury; Group 2 ‒ Laminectomy, spinal cord injury and Saline Solution (SS) 0.9%; Group 3 ‒ Laminectomy, spinal cord injury, and GSH; and Group 4 ‒ lLaminectomy without spinal cord injury. GSH and SS were administered intraperitoneally. Groups 1 and 4 received no intervention. RESULTS: The rats were evaluated for locomotor function recovery at seven different times by the Basso, Beattie, and Bresnahan (BBB) scale on days 2, 7, 14, 21, 28, 35, and 42 after the spinal cord injury. On day 42, the rats were sacrificed to analyze the histological findings of the injured spinal cord. In the group submitted to GSH, our experimental study revealed better functional scores on the BBB scale, horizontal ladder scale, and cranial and caudal axon count. The differences found were statistically significant in BBB scores and axonal count analysis. CONCLUSION: This study demonstrated that using glutathione in experimental spinal trauma can lead to better functional recovery and improved axonal regeneration rate in Wistar rats submitted to experimental spinal cord injury.


Disease Models, Animal , Glutathione , Rats, Wistar , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , Time Factors , Laminectomy , Male , Spinal Cord/pathology , Spinal Cord/physiopathology , Random Allocation , Rats , Axons/pathology , Locomotion/physiology , Reproducibility of Results , Motor Activity/physiology , Treatment Outcome
6.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673871

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Ketamine , Microglia , Rats, Sprague-Dawley , Synapses , Animals , Ketamine/administration & dosage , Ketamine/pharmacology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Rats , Male , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Head Injuries, Closed/pathology , Axons/drug effects , Axons/metabolism , Axons/pathology , Disease Models, Animal , Geniculate Bodies/pathology , Geniculate Bodies/drug effects , Brain Concussion/pathology , Brain Concussion/metabolism , Disks Large Homolog 4 Protein/metabolism , Synapsins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage
7.
Transl Psychiatry ; 14(1): 194, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649377

Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.


Alleles , Genetic Predisposition to Disease , Major Histocompatibility Complex , Schizophrenia , White Matter , Humans , Schizophrenia/genetics , Schizophrenia/pathology , White Matter/pathology , White Matter/diagnostic imaging , Female , Male , Adult , Major Histocompatibility Complex/genetics , Young Adult , Frontal Lobe/pathology , Frontal Lobe/diagnostic imaging , Middle Aged , Diffusion Tensor Imaging , Chromosomes, Human, Pair 6/genetics , Axons/pathology , Polymorphism, Single Nucleotide
8.
Brain Nerve ; 76(4): 361-374, 2024 Apr.
Article Ja | MEDLINE | ID: mdl-38589281

Recent advances in genetic and antibody testing have limited pathological examination of peripheral nerve specimens. However, when examining peripheral neuropathological findings from a modern perspective, there is often an opportunity to comprehend previously unnoticed observations upon re-examining the same specimen. For example, electron microscopy studies have suggested that the components that distinguish between nodal regions and internodes play a pivotal role in the behavior of macrophages that initiate myelin phagocytosis in the demyelinating form of Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy (CIDP). Conversely, some patients previously diagnosed with CIDP were found to possess distinctive mechanisms initiated by autoantibodies against paranodal junction proteins such as neurofascin 155 leading to the emergence of the concept of autoimmune nodopathy. In vasculitis, the roles of neutrophils in antineutrophil cytoplasmic antibody-associated vasculitis, eosinophils in eosinophilic granulomatosis with polyangiitis, and complements in nonsystemic vasculitic neuropathy in tissue damage have also been demonstrated when viewed from a modern perspective. Furthermore, mechanisms attributable to predominant small-fiber loss in hereditary transthyretin amyloidosis have been clarified at an ultrastructural level.


Churg-Strauss Syndrome , Granulomatosis with Polyangiitis , Nervous System Diseases , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Humans , Churg-Strauss Syndrome/pathology , Granulomatosis with Polyangiitis/pathology , Axons/pathology , Autoantibodies
9.
Adv Biol (Weinh) ; 8(5): e2400020, 2024 May.
Article En | MEDLINE | ID: mdl-38548657

Understanding the intricate processes of neuronal growth, degeneration, and neurotoxicity is paramount for unraveling nervous system function and holds significant promise in improving patient outcomes, especially in the context of chemotherapy-induced peripheral neuropathy (CIPN). These processes are influenced by a broad range of entwined events facilitated by chemical, electrical, and mechanical signals. The progress of each process is inherently linked to phenotypic changes in cells. Currently, the primary means of demonstrating morphological changes rely on measurements of neurite outgrowth and axon length. However, conventional techniques for monitoring these processes often require extensive preparation to enable manual or semi-automated measurements. Here, a label-free and non-invasive approach is employed for monitoring neuronal differentiation and degeneration using quantitative phase imaging (QPI). Operating on unlabeled specimens and offering little to no phototoxicity and photobleaching, QPI delivers quantitative maps of optical path length delays that provide an objective measure of cellular morphology and dynamics. This approach enables the visualization and quantification of axon length and other physical properties of dorsal root ganglion (DRG) neuronal cells, allowing greater understanding of neuronal responses to stimuli simulating CIPN conditions. This research paves new avenues for the development of more effective strategies in the clinical management of neurotoxicity.


Axons , Cell Differentiation , Ganglia, Spinal , Animals , Ganglia, Spinal/pathology , Ganglia, Spinal/cytology , Axons/pathology , Neurons/pathology , Humans , Mice , Peripheral Nervous System Diseases/pathology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/physiopathology , Quantitative Phase Imaging
10.
Orphanet J Rare Dis ; 19(1): 138, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38549180

Although the pathology of X-linked adrenoleukodystrophy (ALD) is well described, it represents the end-stage of neurodegeneration. It is still unclear what cell types are initially involved and what their role is in the disease process. Revisiting the seminal post-mortem studies from the 1970s can generate new hypotheses on pathophysiology. This review describes (histo)pathological changes of the brain and spinal cord in ALD. It aims at integrating older works with current insights and at providing an overarching theory on the pathophysiology of ALD. The data point to an important role for axons and glia in the pathology of both the myelopathy and leukodystrophy of ALD. In-depth pathological analyses with new techniques could help further unravel the sequence of events behind the pathology of ALD.


Adrenoleukodystrophy , Spinal Cord Diseases , Humans , Adrenoleukodystrophy/pathology , Axons/metabolism , Axons/pathology
11.
J Vis Exp ; (204)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38465945

Experimental autoimmune encephalomyelitis (EAE) is a common immune-based model of multiple sclerosis (MS). This disease can be induced in rodents by active immunization with protein components of the myelin sheath and Complete Freund's adjuvant (CFA) or by the transfer of myelin-specific T effector cells from rodents primed with myelin protein/CFA into naïve rodents. The severity of EAE is typically scored on a 5-point clinical scale that measures the degree of ascending paralysis, but this scale is not optimal for assessing the extent of recovery from EAE. For example, clinical scores remain high in some EAE models (e.g., myelin oligodendrocyte glycoprotein [MOG] peptide-induced model of EAE) despite the resolution of inflammation. Thus, it is important to complement clinical scoring with histological scoring of EAE, which also provides a means to study the underlying mechanisms of cellular injury in the central nervous system (CNS). Here, a simple protocol is presented to prepare and stain spinal cord and brain sections from mice and to score inflammation, demyelination, and axonal injury in the spinal cord. The method for scoring leukocyte infiltration in the spinal cord can also be applied to score brain inflammation in EAE. A protocol for measuring soluble neurofilament light (sNF-L) in the serum of mice using a Small Molecule Assay (SIMOA) assay is also described, which provides feedback on the extent of overall CNS injury in live mice.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Multiple Sclerosis/pathology , Spinal Cord/pathology , Inflammation/pathology , Axons/pathology , Myelin-Oligodendrocyte Glycoprotein , Mice, Inbred C57BL , Peptide Fragments/adverse effects
12.
J Biol Chem ; 300(4): 107137, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447793

Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport. The standstill reflects the perturbed directionality of the axonal transport of APP, which spends significantly more time traveling in the retrograde direction. This ineffective movement is accompanied by an enhanced association of dynactin-1 with APP, which suggests that reduced anterograde transport of APP is the result of enhanced activation of the retrograde molecular motor dynein by dynactin-1. The impact of the Swedish mutation on axonal transport is not limited to the APP vesicles since it also reverses the directionality of a subset of early endosomes, which become enlarged and aberrantly accumulate in distal locations. In addition, it also reduces the trafficking of lysosomes due to their less effective retrograde movement. Altogether, our experiments suggest a pivotal involvement of retrograde molecular motors and transport in the mechanisms underlying impaired axonal transport in AD and reveal significantly more widespread derangement of axonal transport pathways in the pathogenesis of AD.


Alzheimer Disease , Amyloid beta-Protein Precursor , Axonal Transport , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Axonal Transport/genetics , Axons/metabolism , Axons/pathology , Dynactin Complex/metabolism , Dynactin Complex/genetics , Dyneins/metabolism , Endosomes/metabolism , Endosomes/genetics , Lysosomes/metabolism , Mutation , Genetic Variation
13.
Int J Biol Macromol ; 263(Pt 2): 130333, 2024 Apr.
Article En | MEDLINE | ID: mdl-38408580

The cystic cavity that develops following spinal cord injury is a major obstacle for repairing spinal cord injury (SCI). The injectable self-healing biomaterials treatment is a promising strategy to enhance tissue repair after traumatic spinal cord injury. Herein, a natural extracellular matrix (ECM) biopolymer hyaluronic acid-based hydrogel was developed based on multiple dynamic covalent bonds. The hydrogels exhibited excellent injectable and self-healing properties, could be effectively injected into the injury site, and filled the lesion cavity to accelerate the tissue repair of traumatic SCI. Moreover, the hydrogels were compatible with cells and various tissues and possessed proper stiffness matched with nervous tissue. Additionally, when implanted into the injured spinal cord site, the hyaluronic acid-based hydrogel promoted axonal regeneration and functional recovery by accelerating remyelination, axon regeneration, and angiogenesis. Overall, the injectable self-healing hyaluronic acid-based hydrogels are ideal biomaterials for treating traumatic SCI.


Spinal Cord Injuries , Spinal Cord Regeneration , Humans , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Axons/pathology , Hydrogels/chemistry , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Biocompatible Materials/pharmacology
14.
Neurobiol Dis ; 193: 106454, 2024 Apr.
Article En | MEDLINE | ID: mdl-38408684

Axonal mitochondria defects are early events in the pathogenesis of motoneuron disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. The RNA-binding protein hnRNP R interacts with different motoneuron disease-related proteins such as SMN and TDP-43 and has important roles in axons of motoneurons, including axonal mRNA transport. However, whether hnRNP R also modulates axonal mitochondria is currently unknown. Here, we show that axonal mitochondria exhibit altered function and motility in hnRNP R-deficient motoneurons. Motoneurons lacking hnRNP R show decreased anterograde and increased retrograde transport of mitochondria in axons. Furthermore, hnRNP R-deficiency leads to mitochondrial hyperpolarization, caused by decreased complex I and reversed complex V activity within the respiratory chain. Taken together, our data indicate a role for hnRNP R in regulating transport and maintaining functionality of axonal mitochondria in motoneurons.


Axons , Motor Neurons , Membrane Potentials , Motor Neurons/metabolism , Axons/pathology , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Mitochondria/metabolism
15.
Signal Transduct Target Ther ; 9(1): 32, 2024 Feb 14.
Article En | MEDLINE | ID: mdl-38351062

The appropriate and specific response of nerve cells to various external cues is essential for the establishment and maintenance of neural circuits, and this process requires the proper recruitment of adaptor molecules to selectively activate downstream pathways. Here, we identified that DOK6, a member of the Dok (downstream of tyrosine kinases) family, is required for the maintenance of peripheral axons, and that loss of Dok6 can cause typical peripheral neuropathy symptoms in mice, manifested as impaired sensory, abnormal posture, paw deformities, blocked nerve conduction, and dysmyelination. Furthermore, Dok6 is highly expressed in peripheral neurons but not in Schwann cells, and genetic deletion of Dok6 in peripheral neurons led to typical peripheral myelin outfolding, axon destruction, and hindered retrograde axonal transport. Specifically, DOK6 acts as an adaptor protein for selectivity-mediated neurotrophic signal transduction and retrograde transport for TrkC and Ret but not for TrkA and TrkB. DOK6 interacts with certain proteins in the trafficking machinery and controls their phosphorylation, including MAP1B, Tau and Dynein for axonal transport, and specifically activates the downstream ERK1/2 kinase pathway to maintain axonal survival and homeostasis. This finding provides new clues to potential insights into the pathogenesis and treatment of hereditary peripheral neuropathies and other degenerative diseases.


Peripheral Nervous System Diseases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Axons/metabolism , Axons/pathology , Neurons/metabolism , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/pathology , Signal Transduction/genetics
16.
Invest Ophthalmol Vis Sci ; 65(2): 24, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38345553

Purpose: Axonal degeneration in acute and chronic disorders is well-characterized, comprising retrograde (proximal) and Wallerian (distal) degeneration, but the mechanism of propagation remains less understood. Methods: Laser injury with a diode-pumped solid-state 532 nm laser was used to axotomize retinal ganglion cell axons. We used confocal in vivo imaging to demonstrate that phosphatidylserine externalization is a biomarker of early axonal degeneration after selective intraretinal axotomy. Results: Quantitative dynamic analysis revealed that the rate of axonal degeneration was fastest within 40 minutes, then decreased exponentially afterwards. Axonal degeneration was constrained within the same axotomized axonal bundles. Remarkably, axon degeneration arising from the site of injury induced a secondary degeneration of distal normal axons. Conclusions: Axonal degeneration in vivo is a progressive process associated with phosphatidylserine externalization, which can propagate not only along the axon but to adjacent uninjured axons. This finding has implications for acute and chronic neurodegenerative disorders associated with axonal injury.


Axons , Phosphatidylserines , Humans , Axons/pathology , Axotomy , Wallerian Degeneration/pathology , Retinal Ganglion Cells/pathology
17.
NMR Biomed ; 37(4): e5087, 2024 Apr.
Article En | MEDLINE | ID: mdl-38168082

The increasing availability of high-performance gradient systems in human MRI scanners has generated great interest in diffusion microstructural imaging applications such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion MRI is attained at strong diffusion weightings b , where the deviation from the expected 1 / b scaling in white matter yields a finite transverse diffusivity, which is then translated into an axon diameter estimate. While axons are usually modeled as perfectly straight, impermeable cylinders, local variations in diameter (caliber variation or beading) and direction (undulation) are known to influence axonal diameter estimates and have been observed in microscopy data of human axons. In this study, we performed Monte Carlo simulations of diffusion in axons reconstructed from three-dimensional electron microscopy of a human temporal lobe specimen using simulated sequence parameters matched to the maximal gradient strength of the next-generation Connectome 2.0 human MRI scanner ( ≲ 500 mT/m). We show that axon diameter estimation is accurate for nonbeaded, nonundulating fibers; however, in fibers with caliber variations and undulations, the axon diameter is heavily underestimated due to caliber variations, and this effect overshadows the known overestimation of the axon diameter due to undulations. This unexpected underestimation may originate from variations in the coarse-grained axial diffusivity due to caliber variations. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.


Diffusion Magnetic Resonance Imaging , White Matter , Humans , Diffusion Magnetic Resonance Imaging/methods , Axons/pathology , Magnetic Resonance Imaging , Microscopy, Electron
18.
Transl Res ; 268: 40-50, 2024 Jun.
Article En | MEDLINE | ID: mdl-38246342

Traumatic brain injury (TBI) has a significant impact on cognitive function, affecting millions of people worldwide. Myelin loss is a prominent pathological feature of TBI, while well-functioning myelin is crucial for memory and cognition. Utilizing drug repurposing to identify effective drug candidates for TBI treatment has gained attention. Notably, recent research has highlighted the potential of clemastine, an FDA-approved allergy medication, as a promising pro-myelinating drug. Therefore, in this study, we aim to investigate whether clemastine can enhance myelination and alleviate cognitive impairment following mild TBI using a clinically relevant rat model of TBI. Mild diffuse TBI was induced using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA). Animals were treated with either clemastine or an equivalent volume of the vehicle from day 1 to day 14 post-injury. Following treatment, memory-related behavioral tests were conducted, and myelin pathology in the cortex and hippocampus was assessed through immunofluorescence staining and ProteinSimple® capillary-based immunoassay. Our results showed that TBI leads to significant myelin loss, axonal damage, glial activation, and a decrease in mature oligodendrocytes in both the cortex and hippocampus. The TBI animals also exhibited notable deficits in memory-related tests. In contrast, animals treated with clemastine showed an increase in mature oligodendrocytes, enhanced myelination, and improved performance in the behavioral tests. These preliminary findings support the therapeutic value of clemastine in alleviating TBI-induced cognitive impairment, with substantial clinical translational potential. Our findings also underscore the potential of remyelinating therapies for TBI.


Axons , Clemastine , Cognitive Dysfunction , Disease Models, Animal , Myelin Sheath , Rats, Sprague-Dawley , Animals , Clemastine/pharmacology , Clemastine/therapeutic use , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin Sheath/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/pathology , Axons/drug effects , Axons/pathology , Male , Rats , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Diffuse/drug effects , Brain Injuries, Diffuse/pathology , Hippocampus/drug effects , Hippocampus/pathology
19.
Int Immunopharmacol ; 128: 111482, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38237223

AIMS: The deposition of fibrous scars after spinal cord injury (SCI) affects axon regeneration and the recovery of sensorimotor function. It has been reported that microvascular pericytes in the neurovascular unit are the main source of myofibroblasts after SCI, but the specific molecular targets that regulate pericyte participation in the formation of fibrous scars remain to be clarified. METHODS: In this study, a rat model of spinal cord dorsal hemisection injury was used. After SCI, epigallocatechin gallate (EGCG) was intraperitoneally injected to block the TGFß1 signaling pathway or LV-Snail1-shRNA was immediately injected near the core of the injury using a microsyringe to silence Snail1 expression. Western blotting and RT-qPCR were used to analyze protein expression and transcription levels in tissues. Nissl staining and immunofluorescence analysis were used to analyze neuronal cell viability, scar tissue, and axon regeneration after SCI. Finally, the recovery of hind limb function after SCI was evaluated. RESULTS: The results showed that targeted inhibition of Snail1 could block TGFß1-induced pericyte-myofibroblast differentiation in vitro. In vivo experiments showed that timely blockade of Snail1 could reduce fibrous scar deposition after SCI, promote axon regeneration, improve neuronal survival, and facilitate the recovery of lower limb motor function. CONCLUSION: In summary, Snail1 promotes the deposition of fibrous scars and inhibits axonal regeneration after SCI by inducing the differentiation of pericytes into myofibroblasts. Snail1 may be a promising therapeutic target for SCI.


Cicatrix , Spinal Cord Injuries , Rats , Animals , Cicatrix/metabolism , Cicatrix/pathology , Pericytes/metabolism , Axons/metabolism , Axons/pathology , Recovery of Function/physiology , Nerve Regeneration , Spinal Cord Injuries/drug therapy , Signal Transduction/physiology , Spinal Cord/pathology
20.
Pathol Int ; 74(1): 1-12, 2024 Jan.
Article En | MEDLINE | ID: mdl-38038140

Lewy body disease (LBD) is characterized by the appearance of Lewy neurites and Lewy bodies, which are predominantly composed of α-synuclein. Notably, the cardiac plexus (CP) is one of the main targets of LBD research. Although previous studies have reported obvious differences in the frequency of Lewy body pathology (LBP) in the CP, none of them have confirmed whether LBP preferably appears in any part of the CP. Thus, we aimed to clarify the emergence and/or propagation of LBP in the CP. In this study, 263 consecutive autopsy cases of patients aged ≥50 years were included, with one region per case selected from three myocardial perfusion areas (MPAs) and subjected to proteinase K and then immunohistochemically stained with anti-α-synuclein antibodies to assess LBP. We stained all three MPAs in 17 cases with low-density LBP and observed the actual distribution of LBP. LBP were identified in the CP in 20.2% (53/263) of patients. Moreover, we found that LBP may appear in only one region of MPAs, mainly in the young-old group (35.3% (6/17) of patients). These findings suggest that it is possible to underestimate LBP in the CP, especially in the young-old group, by restricting the search to only one of the three MPAs.


Lewy Body Disease , alpha-Synuclein , Humans , Endopeptidase K , Lewy Body Disease/pathology , Axons/pathology , Lewy Bodies/pathology
...